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Abstract
High-dimensional energy landscapes of complex systems often exhibit a very
complicated barrier structure. For the analysis of the dynamics on such
landscapes, purely ‘energetic’ considerations are no longer sufficient, and
‘entropic’ and/or ‘dynamical’ contributions must be taken into account. We
show how such ‘non-energetic’ barriers should be treated on a conceptually
equal footing with classical ‘energetic’ barriers, and present a region belonging
to a simple model of a crystalline compound, CaF2, which is stabilized by
‘non-energetic’ barriers alone.

1. Introduction

Knowledge of the structure and properties of energy hypersurfaces is important for
understanding the dynamic and static features of a large variety of complex physical and
chemical systems [1–5]. Examples range from the relaxation dynamics in glasses [6–8]
and spin glasses [9], over the folding transformation in proteins [10], and the study
of the properties of clusters [11], polymers [12], and solids [13], to the efficiency of
combinatorial optimization algorithms [14–16]. Due to the complexity of such landscapes, an
analysis of their barrier structure by a simple scale-up of methods applicable to few-minima
systems [17–19] soon reaches its limits, in particular when ‘non-energetic’ contributions to
the barriers separating locally ergodic regions need to be taken into account. The hallmarks of
such barriers in experiments and computer simulations are local equilibration within regions
of the landscape corresponding to ‘energetically’ unstable structures, and very slow dynamics
during transitions between locally ergodic regions, where the escape and transition times,
respectively, do not follow an Arrhenius-like behaviour as a function of temperature.

The qualitative and quantitative aspects of such additional ‘barriers’ (sometimes denoted
‘entropic’ and/or ‘dynamical’) belong to the major open conceptual questions in the field
of complex energy landscapes, from the original studies of two-state systems [20–22], and
their generalizations to multiple basins [23, 24], to the large-scale simulations of glass models
of varying complexity undertaken today [25–27]. For the simplest instance, a single saddle
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point connecting two local minima, one can use transition state theory [20–22] to define
‘free energies’ of activation [23]. More systematic mathematical approaches [28–30] analyse
the probability flow across normally hyperbolic invariant manifolds that separate the two
minimum regions. Extending this approach by accounting for each saddle point separately,
rather quickly becomes a nearly impossible task, in particular, if higher ranking saddles need
to be included. Furthermore, the local properties of individual saddle points, e.g. their energies
and curvatures, might not represent the appropriate quantitative measure of the corresponding
transition region’s influence on the dynamics of the system on the timescales of interest.

In this context, one should note that usually one is only able to sample a small subset
of the full landscape when studying complex energy landscapes on a global level. Thus, the
‘effective’ landscape one observes using various exploration methods might depend on the
specific procedure one employs. For instance, the sets of local minima and saddle points
one detects, e.g. by quenching from a constant temperature Monte Carlo (MC) or MD run,
by performing slow annealing runs, by searching along exhaustive search cross sections of
the landscape [31], by studying energy fluctuations [32], or by employing the threshold
algorithm [33, 34], will usually be different. As a consequence, when modelling e.g. the
long-time constant temperature dynamics from these data, one needs to take the origin of the
information into account. In particular, the modelling step from the sampled minima and
saddle points to the stochastic dynamics might not be straightforward, as mentioned above.

Keeping this in mind, we will focus on the flow of probability on the landscape, and the
timescales associated with the corresponding stochastic dynamics, instead. We will present a
specific example of a metastable structure on the energy landscape of a crystalline system, CaF2,
where the analysis of the stochastic trajectories clearly shows that the structure is stabilized by
‘entropic’ barriers alone. As a consequence, this suggests the introduction of the concept of a
‘generalized’ barrier, which allows us to treat ‘energetic’ and ‘entropic’ barriers on the same
footing.

2. ‘Entropically’ stabilized region for CaF2

Of particular fascination are landscapes with locally ergodic regions, which are not stabilized
via standard ‘energetic’ barriers BE. As a specific instance of this type, we analyse a region
belonging to the energy landscape of a simple model for CaF2, which may be the first clear-
cut example of a non-amorphous structure stabilized by ‘non-energetic’ barriers alone. The
global structure of this landscape has been investigated in earlier work [35, 36], and we refer
to that work for details regarding the geometric structures of the minima (see figure 1) and
the parameters in the potential energy (the interaction between the ions consisted of two-body
terms: Coulomb-plus Lennard-Jones-interaction). Figure 1 shows the major global features
of the landscape in a single-lump tree graph representation [34], as one finds when exploring
the landscape with the threshold algorithm. All landscape explorations—simulated annealing
runs, quench runs, threshold runs, and constant temperature MC simulations—were performed
using stochastic algorithms based on the MC algorithm. The ‘moveclass’ consisted of (small)
random displacements of individual atoms and random changes in the (periodically repeated)
simulation cell.

During the search for local minima on the landscape of CaF2 with simulated annealing [35],
the optimization runs frequently yielded a certain structure, ‘VII-a’ (closely related to the stable
local minimum VII-a in the MgF2 system [35–37]),which appeared to be essentially unchanged
after the relatively short (<104 MC-steps) final quench phase of the optimization procedure2.

2 The fact that the ‘VII-a’-structure was observed during optimizations both with two and four formula units in the
simulation cell is a further sign of the stability of this region on the landscape.
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Figure 1. Tree graph diagram representation of the global structure of the energy landscape of the
simplified CaF2-model. Minimum energy configurations are also depicted (for crystallographic
details, see [35]). The shaded ellipse represents the energy range of the region ‘VII-a’ stabilized
by ‘non-energetic’ barriers.

However, extensive investigations of the stability of the ‘VII-a’-structurewith very long quench
runs (5 × 104 MC-steps) showed that this structure candidate did not correspond to a local
minimum of the potential energy [36]. Instead it was always transformed into the global
minimum of the CaF2 system, the fluorite structure (VIII-a).

At the same time, we employed the threshold algorithm [33] to investigate the stability
of the other structure candidates in the CaF2-system. We observed that during essentially all
of the quench runs that ended in the global minimum, the system resided for a considerable
amount of time in a well-defined energy range between −6.74 and −6.76 eV/atom. The
configurations in this region again exhibited the ‘VII-a’ structure.

In order to analyse this region in configuration space in more detail, in this work we have
performed many threshold and MC simulations starting from points in the part of the landscape
containing the regions VI-f, ‘VII-a’, and VIII-a. In particular, we have closely studied many
instances of paths (both threshold and MC trajectories) taken by the system during the transition
from VI-f to VIII-a in the CaF2-system. A few typical runs are shown in figure 2. Similar to the
saddle region connecting VII-a to VI-a in the MgF2-system [36, 37], the energetic barrier is very
low but the time to cross the saddle can be quite long. The trajectory soon reaches a region,
from where all subsequent quenches will end up in VIII-a. For about 90% of the quench
runs, the region ‘VII-a’ is encountered before the global minimum is reached (figure 2(a)).
Subsequently, a rather long time τesc is spent there searching for an exit3, which implies the
existence of substantial barriers separating this region from the minimum VIII-a.

3 During τesc, the coordination number for the two (crystallographically independent) cations changes from (6, 6) to
(8, 7+1), and the atomic arrangement is transformed from a twisted sixfold coordination like in CaCl2 via a VII-a-like
structure to fluorite (see figure 2(d)). After this has been achieved, only small adjustments of atom–atom distances
and some angles of the ‘pre-fluorite’ configuration are necessary to reach the fluorite structure.
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Figure 2. Energy E versus number of MC-steps nMC for typical runs in CaF2, starting slightly
above the saddle region connecting VI-f to VIII-a. (a), (b), and (c) correspond to T = 0, 0.001, and
0.006 eV/atom, respectively. (d) For six points along a typical trajectory, the corresponding
configurations are shown. Numbers 1 and 6 depict somewhat distorted CaCl2- and fluorite-
structures, respectively. For the intermediate range (−6.74 to −6.76 eV/atom), we find a structure
analogous to VII-a in MgF2 (number 4).

Since every quench run succeeded in leaving ‘VII-a’ in the end, it is obvious that ‘non-
energetic’ barriers of some kind are needed to stabilize this (intermediate) region. The results
of the simulated annealing runs [35] indicate that most likely some rather high local density
of states is present in this region, while the long time the quench runs take to cross this region
suggests a rather complicated ‘microstructure’ in this region. Thus ‘entropic’ and ‘dynamical’
barriers BS and BD appear to contribute to the stability of the region.

The MC runs (of length 105 MC steps) performed at low temperatures for CaF2

(see figures 2(b) and (c)) yielded strong corroborating evidence for the existence of large
‘non-energetic’ barriers. The system spends a long time (up to about 3 × 104 steps) in an
intermediate energy range between about −6.71 and −6.75 eV/atom for T = 0.001 eV/atom,
and about −6.73 to −6.62 eV/atom for T = 0.006 eV/atom. Note that these energies exceed
those observed in the quench runs by an amount O(nfkBT/2), where nf is the number of
degrees of freedom of the system. A clear sign that this slow transition dynamics is not due to
‘energetic’ barriers is the observation that the average escape times from region ‘VII-a’ strongly
increase with temperature: 〈τesc〉(T = 0) = 8.5 × 103, 〈τesc〉(T = 0.001) = 15.8 × 103, and
〈τesc〉(T = 0.006) = 18.5 × 103. This temperature dependence is exactly opposite to what
one would expect for ‘energetic’ barriers, and it is consistent with the fact that the system does
not easily escape from the region ‘VII-a’ during the simulated annealing runs.
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3. Generalized barriers

The system presented above clearly shows that ‘non-energetic’barriers can play a decisive role
in the dynamical behaviour of a system. In particular, the results suggest that one needs a unified
approach that allows us to treat ‘energetic’, ‘entropic’ and ‘dynamical’ barriers on an equal
footing. In order to achieve this goal, our general approach focuses on the flow of probability
on the landscape, and the timescales associated with the corresponding stochastic dynamics,
instead of the classical energy barriers and saddles between local minima. We assume in the
following that the system is in contact with a heat bath and is essentially fully damped, resulting
in a hopping dynamics on the potential energy landscape that can be described with sufficient
accuracy by a constant temperature MC algorithm4.

When analysing the dynamics on landscapes, one very useful step is the coarsening of
the landscape by dividing it into sub-regions, whose internal dynamics and whose interactions
among each other can be described by a few parameters. These sub-regions can be classified
into two types: locally ergodic regions [4, 39], which equilibrate on timescales short compared
to the escape time from the region, τeq < τobs � τesc, and transition regions, where the
equilibration time exceeds the average escape time. Of course, these sub-regions can be
quite extended, e.g. containing many local minima, if the relevant observational timescale
τobs is large. Knowledge of the average escape times from these regions and the associated
probabilities to exit from e.g. region A to B allow us to model the time evolution on large
timescales as a probabilistic dynamics described by a Markov process [38].

Thus, instead of trying to construct ‘energetic’, ‘entropic’, and ‘dynamical’ barriers from
the geometry of the landscape, we place all these barriers on an equal footing by treating the
escape times (for locally ergodic regions) and transition times (for transition regions) as the
primary quantities, and use these to define a generalized barrier via5,

B(T ;R) ∝ ln(τ (T ;R)). (1)

For locally ergodic regions, the escape time is averaged over all points within the region
weighted by the appropriate statistical distribution, while for transition regions, we need to
determine separate transition times for each entrance set of points because of the lack of
local ergodicity. Of course, for simple regions, we can try to compute or estimate such
barriers analytically, and identify typical contributions, B1(T ), B2(T ), etc, labelling them
as e.g. ‘energetic’, ‘entropic’, or ‘dynamical’. Note that, in general, these ‘barriers’ are not
additive, B(T ;R) �= B1 + B2 + · · ·, since the escape time can usually not be written as a product
of independent timescales, τesc �= τ1τ2 · · ·.

To illustrate this approach, consider a locally ergodic minimum region A with NA states
(Eb = energy of minimum), sharing a surface S consisting of NS states6 at an energy Et with
a transition region G, where the total number of states at energy Et and Eb belonging to A is
Nt and Nb, respectively. The surface S is defined as the set of all those points for which the
probabilities, in a stochastic dynamics, to return to A or to enter G are equal (1/2). The escape
time from A via S would thus correspond to the average time needed to reach S from points
within A. Since we are dealing with a locally ergodic region, τesc � τeq. Thus we can assume

4 However, many of the considerations should also apply to more general types of dynamics [38].
5 The unit of time is incorporated in the proportionality factor of equation (1). For modelling purposes, time might
be measured in MC-steps, or the inverse of the highest vibrational frequency, etc.
6 In general, S will consist of several disconnected pieces. Furthermore, the points in S will, in general, belong to a
whole range of energies [Et, Et + �].
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that

(a) the states in A are occupied according to the Boltzmann distribution and the
thermodynamic weight of region A is given by the sum over states Z(A) restricted to
A. Furthermore,

(b) the timescale τD for movement within A (reflecting the internal structure of A) should be
comparable to τeq, τD ≈ τeq, and thus can be neglected when estimating τesc.

It follows that

τesc ∝ Z(A)

NS exp(−Et/T )
= Z(A)

Nt exp(−Et/T )
× Nt

NS
= τ1τ2, (2)

and the corresponding generalized barrier can be written as a sum of two terms,

B = ln

(
Z(A)

Nt exp(−Et/T )

)
+ ln

(
Nt

NS

)
= B1 + B2. (3)

The first term denotes the timescale on which the system will reach the energy range Et of
the exit surface S with probability O(1). For non-exponential growth in the local density
of states of A, gA(E), we can approximate this as7 B1 = BE ≈ (Et − Eb)/T − ln(Nt/Nb).
For (Et − Eb)/T � ln(Nt/Nb), BE represents a purely ‘energetic’ barrier with an activation
energy Et − Eb. However, in the case of gA(E) ∝ exp(α(E − Eb)), this interpretation only
applies for temperatures below the trapping temperature T < Ttrap = 1/α [14, 15]; else, for
T > 1/α, the system is found at E = Et with overwhelming probability, i.e. the ‘energetic’
contribution to B can be neglected.

The second term, B2 = ln(Nt/NS ) ≈ ln(NA/NS), is a measure of the (inverse) probability
of visiting one of the NS points of the exit surface S once the energy Et has been reached.
Since B2 only depends on the relative sizes of the exit surface and the total region, it might
reasonably be called an ‘entropic’ barrier BS. We note that we could interpret NA/NS as the
average time needed by a random walker on an ideal structureless (e.g. a fully connected)
graph to reach a specified set of NS points with probability O(1), τ2 = τ ideal

diff .
In principle, one would need to take the real, possibly rather involved connectivity of A

into account8, τ2 = τ real
diff � τ ideal

diff . Because of the local ergodicity of A, τ real
diff ≈ τ ideal

diff in this
particular instance. But this is no longer the case for transition regions, and one needs to solve
the corresponding diffusion problem in order to determine τ2. In this work, we refrain from
presenting specific analytically solvable examples of transition regions. Detailed analyses of
a number of such examples that might be useful as building-blocks when modelling realistic
transition regions are given in [38].

4. Discussion

While the metastable phases in the CaF2 system have not yet been explored experimentally,
there exist closely related AB2 systems that exhibit (meta)stable compounds analogous to those
we find on the energy landscape of CaF2. One such interesting application of our analysis is the
possible intermediates in the high pressure phase transition of RuO2 from rutile over a CaCl2-
intermediate to the fluorite structure [40]. The second step along that path corresponds exactly
to the VI-f →VIII-a transition we have discussed. Our results suggest that an (‘entropically’
stabilized) structure like VII-a might occur as a second intermediate between CaCl2 and fluorite.

7 For continuous systems at finite temperatures, Nb and Nt would correspond to the number of states within a band
of O(kBT ) around Eb and Et , respectively. Similarly, S will possess a finite volume in state space.
8 In some cases, it can be useful to define BD = ln(τ real

diff /τ ideal
diff ) as a ‘dynamical’ barrier, representing the effect of

the internal structure of A.
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Our conclusion actually supports the proposal by Haines and Léger [40], who have suggested
a hypothetical intermediate very similar to our VII-a-structure along one proposed transition
route. In addition, they observed very slow kinetics of the phase transformation, which is a
first hint that the transition region might be stabilized by ‘non-energetic’ barriers.

The region ‘VII-a’ in the CaF2 system appears to be perhaps the first clear-cut example of
a structurally well-defined region on an energy landscape of a physical system that is stabilized
by purely ‘non-energetic’ barriers. In the past, either mixtures of ‘entropic’/‘dynamical’ and
‘energetic’ barriers were present, e.g. for amorphous systems [7, 23, 25], where the ‘non-
energetic’ barriers are expected to influence the glass transition [7, 8, 15, 27] and are a possible
cause for aging phenomena in spin glasses [41], or one has dealt with structurally ill-defined
‘liquid-like’ states, e.g. dense hard-sphere systems [26].

Such ‘non-energetic’ barriers can also be found in systems with deterministic dynamics9

as recent investigations [42] of the phase space and timescales of seemingly simple systems
consisting of a Cassini and a Sinai billiard show. Finally, generalized barriers of a landscape
also play an important role in the success (or failure) of optimization algorithms [15, 16, 36],
and when optimizing their design one needs to ensure that lowering ‘energy’ barriers does not
raise equally troublesome ‘entropic’ or ‘dynamical’ barriers in their place.
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[30] Wiggins S, Wiesenfeld L, Jaffé C and Uzer T 2001 Phys. Rev. Lett. 86 5478
[31] Schön J C and Sibani P 2000 Europhys. Lett. 49 196
[32] Dall J and Sibani P 2003 J. Phys.: Condens. Matter submitted

(Dall J and Sibani P 2003 Preprint)
[33] Schön J C 1996 Ber. Bunsenges. 100 1388
[34] Schön J C, Putz H and Jansen M 1996 J. Phys.: Condens. Matter 8 143
[35] Wevers M A C, Schön J C and Jansen M 1998 J. Solid State Chem. 136 223
[36] Wevers M A C, Schön J C and Jansen M 1999 J. Phys.: Condens. Matter 11 6487
[37] Wevers M A C, Schön J C and Jansen M 2001 J. Phys. A: Math. Gen. 34 4041
[38] Schön J C 2003 in preparation
[39] Schön J C 1998 Proc. RIGI-workshop 1998 ed J Schreuer, ETH Zürich, Zürich
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